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Abstract:

Background:

Emergency Department (ED) crowding is a frequent problem that causes prolonged waiting and increased risk of adverse events.
While the number of daily and monthly patient arrivals can be forecasted with good accuracy, ED clinicians need hourly forecasts in
their ongoing scheduling and rescheduling of their work.

Objective:

We aim to  assess  whether  the  hour-by-hour  evolution  in  patient  arrivals  and  ED occupancy can  be  accurately  forecasted  using
calendar variables.

Method:

We obtained data about the patient visits at four Danish EDs from January 2012 to January 2015, a total of 393717 ED visits. The
data for 2012-2014 were used to create linear regression models, autoregressive integrated moving average (ARIMA) models, and –
for purposes of comparison – naïve models of hourly patient arrivals and ED occupancy. Using the models, patient arrivals and ED
occupancy were forecasted for every hour of January 2015.

Results:

Hourly  patient  arrivals  were  forecasted  with  a  mean  percentage  error  of  47-58%  (regression),  49-58%  (ARIMA),  and  60-76%
(naïve). Increasing the forecasting interval decreased the mean percentage error. ED occupancy was forecasted with better accuracy
by ARIMA than regression models.  With  ARIMA the mean percentage error  of  the  forecasts  of  the  hourly  ED occupancy was
69-73% for three of the EDs and 101% for the last ED. Factors beyond calendar variables might possibly have improved the models
of ED occupancy, provided that information about these factors had been consistently available.

Conclusion:

Hourly  patient  arrivals  can  be  forecasted  with  decent  accuracy.  Forecasts  of  hourly  ED  occupancy  are  less  accurate  and  their
accuracy varies more across EDs.

Keywords: Crowding, Emergency department, Forecasting, Occupancy, Patient arrivals, Healthcare.

1. INTRODUCTION

The common entry point to hospitals for nearly all patients with acute problems is the emergency department (ED),
which is a busy – sometimes hectic – place where severely injured persons may arrive at little notice, yet the bulk of the
patients have unalarming injuries. EDs become crowded “when  the  identified  need  for  emergency  services  exceeds
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available resources for patient care in the emergency department (ED), hospital, or both” [1, p. 585]. To counteract
crowding, ED clinicians need advance warning of changes in the number of patient arrivals, the treatment capacity of
the ED, and the possibility of transferring patients out of the ED. While the arrival of patients is determined by factors
beyond the ED clinicians’ control, previous research has found consistent hour-of-the-day and day-of-the-week patterns
in patient arrivals [2 - 6]. Such patterns enable forecasting. However, existing models for forecasting patient arrivals
focus on forecasting daily [7 - 11] or monthly [5, 12] arrivals. We focus on forecasting the hour-by-hour evolution in
patient arrivals and ED occupancy to support ED clinicians in their ongoing scheduling and rescheduling of their work
so that they can provide quality care and avoid crowding.

ED clinicians already use artifacts, such as whiteboards [13], and procedures, such as triage [14], to schedule their
work but whiteboards and triage help manage known patients. The aim of this study is to extend clinicians’ planning
horizon a couple of hours into the future by providing forecasts of the arrival of patients who are yet unknown to the
clinicians. Hourly forecasts are challenging because the noise caused by random variation may overshadow any pattern
in  the  data.  In  this  respect,  forecasts  of  daily  or  monthly  arrivals  are  likely  easier  but  target  decisions  about  staff
allocation and the like, not the ongoing scheduling and rescheduling of how the available resources are divided among
the patients in need of emergency services.

In this paper, we create models for forecasting the hour-by-hour evolution in patient arrivals, that is the number of
people arriving in the ED for treatment,  and ED occupancy,  that  is  the accumulated increase since midnight  in the
number of patients in the ED. Of the several approaches to modeling ED operations we choose linear regression and
time-series  analysis,  both  recommended  by  Wiler  et  al.  [15].  Accurate  forecasts  of  hourly  patient  arrivals  and  ED
occupancy will support clinicians in counteracting crowding. We assess the accuracy of the forecasts and discuss the
possibilities of making them more accurate.

2. METHOD

The study was based on log data from visits at the four EDs in Region Zealand, one of five healthcare regions in
Denmark. Prior to conducting the study we obtained approval from the healthcare region.

2.1. The ED Data

The four EDs were part of medium-sized hospitals and collectively served a population of approximately 817,000
citizens.  To  characterize  the  population  served  by  each  ED  we  obtained  data  from  Statistics  Denmark  about  the
municipalities of Region Zealand and recalculated them into sums for the catchment areas of the EDs, see Table 1. ED1
served an older population with a higher frequency of chronic diseases and a lower employment rate. The three other
EDs served rather similar populations. It may also be noted that in Denmark hospital care is financed via taxes. Thus,
neither  ED  treatment  nor  treatment  in  an  inpatient  department  is  dependent  on  the  patient’s  personal  wealth  or
insurance.

Table 1. Demographics for the catchment areas of the four EDs.

ED1 ED2 ED3 ED4
Population served 145000 282000 185000 205000
Patient age (years) 45.8 41.7 42.6 42.4

Citizens with chronic diseases a 34% 29% 30% 31%
Relation to the labor market:

Employed 42% 48% 47% 46%
Unemployed 2% 2% 2% 2%

Not in the labor force 56% 49% 51% 52%
Note: Data for municipalities were obtained from Statistics Denmark and recalculated into sums for the catchment areas of the EDs. The data are for
the beginning of 2014, except the data about chronic diseases which are for 2010. a Covers the chronic conditions cardiovascular disease, chronic
obstructive pulmonary disease, diabetics, osteoporosis, rheumatoid arthritis, and mental illness.

The EDs introduced the same electronic whiteboard in December 2009 (ED1), January 2010 (ED2), January 2011
(ED3),  and  May  2011  (ED4).  The  whiteboard  supplemented  the  electronic  patient  record  by  providing  procedural
information about the patients, such as time of arrival, triage level, responsible physician, responsible nurse, current
treatment  activity,  and  time  of  departure.  Whenever  the  content  of  the  whiteboard  changed,  the  change  was
automatically  logged.
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For the purpose of this study the whiteboard vendor produced a version of the logs from which all patient names,
clinician  names,  and  other  information  that  might  identify  persons  had  been  removed.  These  anonymized  log  data
covered the period from January 2012 to January 2015. However, the data for January 2013 - January 2014 (ED1) and
November 2013 - January 2014 (ED2-4) turned out to be incomplete and were discarded from the analysis. Thus, the
analysis was based on 2.0 years of data from ED1 and 2.8 years of data from ED2, ED3, and ED4.

Each of the 10.15 million entries in the logs documented an event that changed the whiteboard content. A log entry
consisted of a timestamp, the event type, any values associated with the event, and a system-generated identifier of the
visit  to  which  the  event  pertained.  For  example,  the  event  type  ‘LocationChanged’  along  with  the  event  value
‘Transferred’ indicated that the patient had been discharged from the ED. After removing 769 outliers (defined as visits
longer than seven days, i.e. 53 times the median length of stay), the dataset comprised 393717 ED visits.

2.2. Models

We modeled the number of patient arrivals and the ED occupancy using calendar variables. We made all our models
sensitive to the hour of the day and the day of the week because previous studies have found that ED arrivals vary
significantly across these two calendar variables [2 - 7]. In addition, we included the month of the year in one of our
models because several studies have found that ED arrivals also vary with this calendar variable [7, 8, 11, 12]. Our main
interest was to forecast hourly arrivals and hourly occupancy but to assess the effect of the length of the forecasting
interval on the accuracy of the models we made models for intervals of 1, 2, 4, 8, and 24 hours. For each forecasting
interval, we made three models:

Linear regression, which fits a data series by a linear function of a set of predictors. As predictors we used indicator
variables  for  the months of  the year,  the days of  the week,  and the hours  of  the day (in the analysis  with a  2-hour
forecasting interval the hours of the day were replaced with the 2-hour blocks of the day, and so forth for the 4-hour, 8-
hour, and 24-hour forecasting intervals). We initially included all predictors and then applied the standard procedure of
backward elimination [16] to sequentially remove the predictor that contributed the least to explaining the variance in
the number of ED arrivals. This removal process continued as long as the significance of the F-test of the removed
predictor  exceeded  0.05.  The  resulting  regression  models  included  the  predictors  that  contributed  appreciably  to
explaining the variation in the number of ED arrivals. Regression models of the ED occupancy were created in a similar
manner.

Autoregressive integrated moving average (ARIMA), which fits the data series with a seasonal and a non-seasonal
component [17]. The structure of an ARIMA model is represented as (p, d, q)×(P, D, Q)s  where p, d, and q are the
parameters of the non-seasonal component and give the order of autocorrelation, differencing, and moving averaging,
respectively.  P,  D,  and  Q  are  the  same  parameters  for  the  seasonal  component,  which  has  the  periodicity  s.  The
periodicity  of  the  season  must  be  specified,  the  other  parameters  were  estimated  with  SPSS (version  22.0.0.0).  To
capture the daily as well as the weekly pattern in ED arrivals, we specified a season of a week consisting of 168 hours
(in the analyses with forecasting intervals longer than 1 hour the season was specified as 84 / 2-hour, 42 / 4-hour, 21 / 8-
hour, or 7 / 24-hour blocks). ARIMA models are a flexible and widely used means of modeling time series.

Naïve model, which for seasonal data series (e.g., those studied in this paper) uses as its forecast the observed value
a season ago [18]. We used a season of one week and, thus, our naïve model forecasted that the number of ED arrivals
at a specified time and day of week would equal the number of arrivals at the same time the previous week. The naïve
model is a simple model against which to benchmark more sophisticated models.

2.3. Measures of Model Accuracy

We divided the data series for the four EDs into an estimation set, which consisted of the data from January 1, 2012,
to December 31, 2014, and a forecasting set, which consisted of the data from January 1 to 31, 2015. The estimation set
was used to estimate the model parameters and to measure how well the models fitted the data based on which they
were made (the in-sample accuracy). The forecasting set was used to measure the accuracy of forecasts made with the
models (the out-of-sample accuracy). We estimated the risk that the models overfitted the data based on which their
parameters were estimated by comparing the in-sample and out-of-sample accuracy.

Considerable discussion exists about which measures best express the accuracy of forecasting models. We assessed
model accuracy with three measures:
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Mean Absolute Error (MAE), which is the unsigned forecast error averaged over the dataset. MAE is on the same
scale as the data and therefore easily interpretable. However, the scale-dependence also means that MAE cannot be used
when comparing across datasets that have different scales (e.g., hourly ED arrivals vs daily ED arrivals). We prefer
MAE to the root mean square error because MAE gives the same weight to all  forecast errors and therefore is less
sensitive  to  outliers  [19].  Formally,  MAE  =  mean(|et|),  where  the  forecast  error  (et)  is  the  difference  between  the
observed value (Yt) and the forecast (Ft), that is et = Yt – Ft.

Mean Absolute Percentage Error (MAPE), which is the unsigned percentage error averaged over the dataset. MAPE
is scale-independent and can therefore be used when comparing forecast models across datasets with different scales.
For that  reason, MAPE is frequently recommended as the primary measure of forecast  accuracy [20] but it  has the
disadvantage of having a very skewed distribution when any observed value in the dataset is close to zero [21]. If any
observed value is zero then MAPE is undefined or the observed value must be treated as a missing value and left out of
the  MAPE  calculation.  SPSS  takes  the  latter  approach,  which  appears  acceptable  for  large  datasets  such  as  those
analyzed in this paper. Formally, MAPE = mean(|pt|), where the percentage error (pt) is the forecast error expressed as a
percentage of the observed value, that is pt = 100 et/Yt.

Mean Absolute Scaled Error (MASE), which is the unsigned forecast error relative to the in-sample MAE of the
naïve model, averaged over the dataset [21]. Like MAPE, MASE is scale-independent and can be used when comparing
forecast models across datasets with different scales. At the same time, MASE avoids the disadvantages of MAPE. A
MASE greater than one indicates that the forecasts are, on average, worse than those of the naïve model. To justify a
model, its MASE will normally have to be considerably smaller than one. Formally, MASE = mean(|qt|), where the
scaled error (qt) is the forecast error divided by the mean in-sample error of the naïve model, that is qt = et/MAEnaïve,in.

3. RESULTS

We made forecasting models of the patient arrivals and the occupancy in ED1 to ED4. The EDs were pairwise
similar  in the number of  annual  patient  arrivals  but  the patients’  length of  stay in the ED differed from hospital  to
hospital, see Table 2. The difference in ED length of stay indicated differences in the division of labor between the ED
and  the  inpatient  departments;  ED4,  in  particular,  performed  a  broader  range  of  tasks  to  offload  the  inpatient
departments.

Table 2. Arrivals and ED length of stay.

Department Arrivals per Year ED Length of Stay (hours)
ED1 33643 8.39
ED2 40321 4.58
ED3 34788 6.10
ED4 40565 13.59

3.1. Patient Arrivals

Fig. (1) shows the average number of patient arrivals at ED3. As expected, there was a significant effect of the hour
of the day on the number of arrivals, F(23, 24672) = 1043.13, p < .001, η2 = .49. The effect size (η2) indicates that the
hour of the day explained 49% of the variance in the number of hourly arrivals. There was also a significant effect of
the day of the week on the number of arrivals, F(6, 1022) = 15.95, p < .001, η2 = .09. However, the effect size was
moderate in that the day of the week merely explained 9% of the variance in the number of daily arrivals. In addition,
the month  of  the year  explained 7%  of the  variance  in  the number  of daily  arrivals, F(11, 1017) = 7.46, p < .001,
η2 = .07. The pattern in patient arrivals was similar for the three other EDs. Specifically, the effect sizes for the effect of
the hour of the day on the number of arrivals were 51% (ED1), 53% (ED2), and 52% (ED4).

After having confirmed the importance of calendar variables to the number of patient arrivals (see Fig. 1), we turned
to the creation of the forecasting models. To recap, the regression models had indicator variables for the hours of the
day, the days of the week, and the months of the year, the ARIMA models had a season consisting of the 168 hours of
the  week,  and  the  naïve  models  used  the  number  of  arrivals  at  the  same  time  last  week  as  their  prediction.  The
coefficients of the resulting regression models (see Appendix 1) showed larger variation in patient arrivals across the
hours of the day than across the days of the week and the months of the year. In terms of the hour of the day, patient
arrivals  peaked  at  11  (ED1),  12  (ED2),  13  (ED3),  and  11  (ED4).  For  all  four  EDs,  Monday  was  the  busiest  day;
Saturday and Sunday were the quietest. The month with the highest number of patient arrivals was July-August (ED1),



Forecasting Hourly Patient Visits in the ED The Ergonomics Open Journal, 2017, Volume 10   5

September (ED2), May (ED3), and September (ED4), while the month with the lowest number of arrivals was either
January or February.  With respect to the resulting ARIMA models it  can be noted that they all  had a non-seasonal
component (all ps and qs were non-zero, see Table 3) as well as a seasonal component (all Ps and Qs were non-zero,
see Table 3). That is, the forecasts depended on the immediately preceding values in the time series as well as on the
values for the same time the preceding weeks. In addition, none of the ARIMA models had a global trend (all ds and Ds
were zero). That is, throughout each data series the number of patient arrivals varied about an unchanging mean level.

Fig. (1). Number of patient arrivals at ED3 by hour of the day and day of the week. Note: Data for 1029 days. Error bars show the
95% confidence interval.

Table 3 summarizes the accuracy of the models. The models forecasted the number of patient arrivals during every
hour of January 2015 with a mean error of 1.62-1.82 (regression), 1.59-1.82 (ARIMA), and 2.19-2.36 (naïve) patients,
corresponding to mean percentage errors of 47% or more. Four issues should be noted. First, the accuracy was similar
across  EDs,  thereby  increasing  the  robustness  of  the  results.  Second,  the  models  did  not  describe  the  data  used  in
building the models with better accuracy than the accuracy with which they forecasted arrivals occurring after the data
used in building the models. This similarity of the in-sample accuracy and the out-of-sample accuracy indicated that the
models did not overfit the data. Third, the regression and ARIMA models were an improvement over the naïve model
but only a moderate improvement. The forecast errors were 73-77% (regression) and 72-75% (ARIMA) of the errors
obtained  with  the  naïve  model.  Fourth,  the  accuracy  of  the  regression  models  and  the  ARIMA  models  was  near
identical.

Table 3. Accuracy of the models of patient arrivals with a 1-hour forecasting interval.

Department Model MAE MAPE MASE
In Out In Out In Out

ED1
Regression 1.61 1.62 51 58 0.76 0.76

ARIMA (2,0,2)×(2,0,1)168 1.60 1.59 50 58 0.76 0.75
Naïve model 2.12 2.19 69 76 1.00 1.03

ED2
Regression 1.81 1.75 48 47 0.75 0.73

ARIMA (2,0,4)×(1,0,1)168 1.77 1.72 47 49 0.74 0.72
Naïve model 2.40 2.36 65 66 1.00 0.99

ED3
Regression 1.67 1.70 50 54 0.76 0.77

ARIMA (2,0,2)×(1,0,1)168 1.64 1.66 48 56 0.74 0.75
Naïve model 2.21 2.22 68 75 1.00 1.00

ED4
Regression 1.83 1.82 48 48 0.75 0.75

ARIMA (3,0,3)×(1,0,1)168 1.79 1.82 47 51 0.73 0.75
Naïve model 2.43 2.31 66 60 1.00 0.95

Note: MAE = Mean Absolute Error, MAPE = Mean Absolute Percentage Error, MASE = Mean Absolute Scaled Error, In = in sample (i.e., calculated
over the data used in building the model: January 2012 – December 2014), Out = out of sample (i.e., calculated over the forecasted data: January
2015).
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A possible reason for the modest accuracy of the models was the short forecasting interval. In the number of hourly
arrivals, the pattern caused by calendar variables might not contain enough patients to overshadow the noise caused by
random variation. To investigate this possibility we created models with forecasting intervals of 2, 4, 8, and 24 hours.
Table 4 shows the accuracy of these models for ED2; the models for the other EDs had similar accuracies. There was a
consistent decrease in mean percentage error as the forecasting interval increased. With a forecasting interval of 24
hours (i.e., forecasting the number of daily arrivals), the mean percentage error of the forecasts had decreased to 9.9%
(regression) and 11% (ARIMA). A forecasting interval of 8 hours, corresponding to a work shift, still yielded forecasts
with a mean percentage error of 26% (regression) and 21% (ARIMA). For all four EDs the ARIMA models were more
accurate than the regression models at forecasting intervals of 2, 4, and 8 hours, whereas the results at a forecasting
interval of 24 hours were mixed. The improvement over the naïve model remained moderate at all forecasting intervals.

Table 4. Accuracy of the models of patient arrivals at ED2 for different forecasting intervals.

Interval Model MAE MAPE MASE
In Out In Out In Out

2 hours
Regression 2.75 2.54 46 37 0.77 0.71

ARIMA (2,0,2)×(1,0,1)84 2.65 2.37 43 41 0.74 0.66
Naïve model 3.56 3.30 54 50 1.00 0.93

4 hours
Regression 4.19 3.93 41 34 0.81 0.76

ARIMA (3,0,3)×(0,1,1)42 3.79 3.36 34 34 0.73 0.65
Naïve model 5.19 4.60 43 39 1.00 0.89

8 hours
Regression 6.62 6.57 35 26 0.85 0.84

ARIMA (1,0,4)×(1,1,1)21 5.77 5.43 28 21 0.74 0.70
Naïve model 7.80 7.49 34 30 1.00 0.96

24 hours
Regression 10.97 11.18 12 9.9 0.72 0.74

ARIMA (0,1,2)×(1,0,1)7 10.86 13.02 12 11 0.72 0.86
Naïve model 15.16 12.03 16 11 1.00 0.79

Note: MAE = Mean Absolute Error, MAPE = Mean Absolute Percentage Error, MASE = Mean Absolute Scaled Error, In = in sample (i.e., calculated
over the data used in building the model: January 2012 – December 2014), Out = out of sample (i.e., calculated over the forecasted data: January
2015).

3.2. ED Occupancy

Fig. (2) shows the occupancy of ED1. There was a significant effect of the hour of the day on the occupancy of
ED1, F(23, 17280) = 126.04, p < .0001, η2 = .14. The occupancy increased steeply from 7 in the morning until noon and
then decreased gradually the rest of the day. The pattern was roughly similar for the other EDs but the effect sizes
varied. That is, the hour of the day explained 14% (ED1), 33% (ED2), 32% (ED3), and 2.2% (ED4) of the variance in
occupancy.

Fig. (2). Occupancy in terms of the accumulated increase since midnight in the number of patients in ED1. Note: Data for 721 days.
Error bars show the 95% confidence interval.
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We created forecasting models for the occupancy of the EDs. The models forecasted the occupancy during every
hour  of  January  2015  with  a  mean  error  of  5.40-17.71  (regression),  2.57-5.43  (ARIMA),  and  7.29-23.63  (naïve)
patients, see Table 5. For each model, the errors were similar for ED1, ED2, and ED3 but markedly larger for ED4. The
larger errors for ED4 were unsurprising given the negligible size of the effect of the hour of the day on the occupancy of
ED4. However, even for ED1 to ED3 the mean percentage error of the forecasts was at least 69%. We note that the
forecast errors were 23-37% (ARIMA) and 72-75% (regression) of the errors obtained with the naïve model. Thus, the
ARIMA models were substantially more accurate than the naïve and regression models. We also note that the models
did not overfit the data, as indicated by the similarity of the in-sample and out-of-sample accuracies.

Table 5. Accuracy of the models of ED occupancy with a 1-hour forecasting interval.

Department Model MAE MAPE MASE
In Out In Out In Out

ED1
Regression 5.46 5.46 116 117 0.73 0.73

ARIMA (2,0,1)×(1,0,1)168 2.45 2.57 72 73 0.33 0.34
Naïve model 7.52 7.50 192 191 1.00 1.00

ED2
Regression 5.47 5.46 115 115 0.75 0.75

ARIMA (2,0,1)×(1,0,1)168 2.60 2.67 68 69 0.36 0.37
Naïve model 7.29 7.29 170 170 1.00 1.00

ED3
Regression 5.41 5.40 115 115 0.73 0.72

ARIMA (2,0,1)×(1,0,1)168 2.61 2.68 68 70 0.35 0.36
Naïve model 7.46 7.42 177 177 1.00 1.00

ED4
Regression 17.93 17.71 137 136 0.75 0.74

ARIMA (2,1,4)×(2,0,1)168 5.28 5.43 100 101 0.22 0.23
Naïve model 24.00 23.63 266 264 1.00 0.99

Note: MAE = mean absolute error, MAPE = mean absolute percentage error, MASE = mean absolute scaled error, In = in sample (i.e., calculated
over the data used in building the model: January 2012 – December 2014), Out = out of sample (i.e., calculated over the forecasted data: January
2015).

To begin to understand the influence of throughput and output, as opposed to input, factors on the occupancy of the
EDs, we looked at the patients’ length of stay in the ED. By comparing whether length of stay was affected more by the
hour of the day at which the patient arrived in the ED or the hour of the day at which the patient left the ED, we got an
indication of the relative influence of input and output factors on ED occupancy. Fig. (3) shows these data for ED4.
Arrival hour explained a negligible 0.5% of the variance in length of stay, whereas leaving hour explained 6.0%. Across
the four EDs, arrival hour explained 0.5-0.8% and leaving hour 4.1-15% of the variance in length of stay. Leaving hour
explained  an  average  of  12  times  more  of  the  variance  than  arrival  hour,  thereby  suggesting  that  more  accurate
forecasting models of ED occupancy can be created by introducing factors beyond calendar variables.

Fig. (3). Length of stay by the hour of the day at which the patient arrived in ED4 and left ED4. Note: Data for 1029 days. Error bars
show the 95% confidence interval.
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In  addition  to  calendar  variables,  the  log  data  contained  information  about,  among  other  things,  the  patients’
progress through the ED workflow. The EDs recorded different sets of such throughput information but the workflows
of the EDs shared five main activities: triage, waiting to be seen by nurse, waiting to be seen by physician, examination
(by junior physician), and review (by senior physician). Information about the patients’ progress through these activities
was  included  on  the  whiteboard  because  at-a-glance  access  to  this  information  was  deemed  important  to  the  ED
clinicians’ overview of the state of the ED. Yet, the log data showed that even these five main treatment activities were
recorded for only a subset of the ED visits, see Table 6. For example, triage was only recorded as the current treatment
activity for 0.02-28% of the ED visits. Importantly, this does not indicate that a minority of the patients were triaged but
that triage was only documented as the current treatment activity for a minority of the patients. The lack of consistency
with which these throughput factors were recorded prevented their use in forecasting models.

Table 6. Percentage of ED visits for which main treatment activities were recorded as the current treatment activity.

Activity
ED1 ED2 ED3 ED4

% % % %
Triage 0.02 28 0.10 21

Waiting to be seen by nurse 0.64 10 71 74
Waiting to be seen by physician 19 49 34 26

Examination (by junior physician) 35 33 29 23
Review (by senior physician) 27 45 0.00 17

Note. Data for 393717 ED visits

4. DISCUSSION

In the following, we discuss the accuracy of the forecasts, the data necessary to make more accurate forecasts, and
the limitations of this study.

4.1. Accuracy of the Forecasts

The regression and ARIMA models forecasted hourly arrivals with an absolute error (MAE) of 1.59-1.82 patients,
corresponding to a percentage error (MAPE) of 47-58%. These results accord with the few previous studies that have
looked at hourly forecasts. Using a multivariate time-series model, Jones et al. [22] forecasted hourly patient arrivals
with an MAE of approximately two patients for three EDs seeing slightly more patients than the EDs in this study.
Using a tailor-made model, Boyle et al. [23] forecasted hourly arrivals with an MAPE of 50%. Given the measures of
the accuracy of the forecasts, can the models be considered accurate? This question warrants four notes.

First, Jones et al. [22, p. 135] were “pleased with the high degree of accuracy” of their model. It also speaks to the
advantage  of  our  models  that  they  do  not  overfit  the  data.  In  addition,  models  that  extend  calendar  variables  with
weather variables, such as temperature readings and rain-/snowfall data, do not achieve better accuracy [24]. Adding
variables about the demand for inpatient resources has also been found not to improve the accuracy of models of ED
visits [22].

Second,  the  percentage  error  of  the  forecasts  increased  as  the  forecast  interval  decreased.  The  forecasts  of  the
ARIMA models for ED2 had a percentage error of 11% for daily arrivals, 21% for 8-hourly arrivals, 34% for 4-hourly
arrivals, 41% for 2-hourly arrivals, and 49% for hourly arrivals. This finding is important because it shows that MAPE
values for one forecast interval do not generalize to other forecast intervals. Rather, forecasts of hourly arrivals are less
accurate than forecasts of daily arrivals. It may be noted that the MAPE of 11% for daily arrivals in ED2 is within the
range (4.2-14.4%) reported by Wargon et al. [24] in a review of models for forecasting the number of daily ED visits,
thereby suggesting that a worsening of the MAPE from 11% (daily) to 49% (hourly) may not be unusual. Part of the
reason for the worse MAPE for hourly arrivals likely is that the averaging approach of the models means that they
underestimate the level of short-term variability and the size of occasional surges [15].

Third, the extra complexity of the regression and ARIMA models relative to the naïve model resulted in smaller
errors. In modeling patient arrivals, the regression and ARIMA models performed similarly for all forecast intervals.
This result accords with previous studies of daily arrivals [8]. In modeling ED occupancy, the ARIMA models were
superior to the regression models, but it should be kept in mind that the models of occupancy were less accurate than
those of arrivals. Furthermore, the multivariate time-series model used by Jones et al. [22] did not achieve lower errors
than  our  ARIMA models  in  spite  of  the  increased  complexity  of  their  multivariate  approach  compared  to  ARIMA
models,  which  are  univariate.  These  results  indicate  that  ARIMA  models  are,  currently,  among  the  most  accurate
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models for forecasting ED visits.

Fourth, evidence about the use of forecasting models during ED work is scarce, probably because the data necessary
to make such forecasts in real time are only gradually becoming available. Thus, it is still mainly future work to assess
whether  the  models  provide  sufficiently  accurate  forecasts  to  be  useful  in  practice.  Jessup  et  al.  [25]  studied  ED
clinicians’  experience  of  a  forecasting  tool  after  it  had  been  in  use  for  a  year.  The  forecasts  varied  from  being
experienced as “pretty accurate” on some days to “off the mark” on others. Generally, the interviewees were positive
about the tool but did not assign its forecasts any special authority. The main driver of the positive view of the tool
appeared to be that it facilitated communication by bringing people together as they accessed the tool and talked about
its  forecasts.  That  is,  the  actual  forecasts  (and  their  accuracy)  may  be  less  important  than  the  communication  and
collective decision-making that evolved around the tool. The combined role of communication and content in relation to
the forecasting tool resembles studies of the role of ED whiteboards [13].

4.2. Data for Forecasting

Forecasting requires reliable data. Patients’ arrival in the EDs was consistently recorded, and these calendar data
permitted forecasts of hourly patient arrivals with modest but useful accuracy. The hourly ED occupancy could not be
forecasted with similar accuracy on the basis of calendar variables. While the ARIMA models forecasted hourly ED
occupancy substantially better than the regression and naïve models, the mean percentage error of the ARIMA forecasts
was  69-73%  for  ED1  to  ED3  and  101%  for  ED4.  Four  issues  should  be  noted  in  relation  to  the  forecasts  of  ED
occupancy.

First,  it  appears that  additional  information may generate more accurate forecasts  of  hourly ED occupancy.  ED
occupancy is  influenced by the  number  of  patient  arrivals  as  well  as  by the  throughput  and output  of  the  ED.  The
influence of throughput and output factors is illustrated by the better ability of leaving hour than arrival hour to explain
the variance in  length of  stay in  the  EDs.  Abraham et  al.  [26]  report  a  similar  result  for  total  length of  stay in  the
hospital  and  propose  that  the  better  ability  of  leaving  time  to  explain  variance  in  length  of  stay  is  due  to  fewer
discharges over the weekend and other differences in discharge practices.  While this proposition focuses on output
factors and bypasses throughput factors, Hertzum [2] lists both throughput and output factors as bottlenecks in the ED.
The listed throughput factors include linear workflows and manual data entry. It is, however, not obvious how such
factors may be included in forecasting models.

Second, throughput and output factors probably vary more across EDs than input factors because throughput and
output factors include hospital issues as well as patient issues. For example, the large differences in average ED length
of stay (Table 2) indicate differences in the division of labor between the ED and the inpatient departments. The impact
of these issues is,  for example,  apparent in the substantially larger errors in the forecasts of the occupancy of ED4
compared to the other EDs, and it suggests that the selection of variables for forecasting models of ED occupancy may
need to be tailored to local conditions.  Conversely,  the demographic differences in the catchment areas of the EDs
(Table 1) did not lead to marked differences across the EDs in the forecast accuracy of patient arrivals.

Third, we extracted information about the patients’ progress through the ED from the log data with the aim of using
this throughput information in the modeling of ED occupancy. We expected that, for example, waiting longer to be seen
by a nurse would be a predictor of higher ED occupancy. Instead, we found a frequent absence of information about
which treatment activity was currently in progress. Out of five main treatment activities at most one was recorded for
more than half of the patients. In all EDs at least one of the five activities was recorded for no more than 17% of the
patients. The incomplete recordings prevented the use of these, and other, throughput factors in the forecasting models.

Fourth, the frequent absence of information about which treatment activity was currently in progress is the result of
a constant tension between treating patients and documenting treatments. This tension is aggravated by the status of the
whiteboard as a transitional artifact. Transitional artifacts hold procedural information and, thereby, fill a gap between
the work being performed and the formal documentation of it [27]. Procedural information is pertinent to crowding-
related  forecasting  models  but  the  transitional  status  of  the  whiteboard  means  that  the  clinicians  are  not  formally
required to keep the whiteboard current. As a consequence, it is less consistently kept than the patient records with the
formal documentation of the patients’ condition. The introduction of a forecasting tool that presupposes the procedural
information  might  motivate  the  clinicians  to  record  it  more  consistently.  However,  the  study  by  Jessup  et  al.  [25]
suggests that the clinicians may, instead, prefer to interpret and use the forecasts in the light of their knowledge of the
imperfect quality of the data on which the forecasts are made. Bypassing manual data entry would resolve this issue but
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requires that the procedural information can be automatically and reliably derived from other recordings.

4.3. Limitations

Three limitations should be remembered in interpreting the results of this study. First, the data are from EDs in one
healthcare region of one country. While the four EDs differ somewhat in demographic characteristics and show that the
results  of  the  study  are  not  peculiar  to  one  ED,  we acknowledge  that  the  results  may be  influenced  by  the  Danish
healthcare  system and by living  conditions  in  Denmark in  general.  More  work  is  needed on forecasting  models  of
hourly patient arrivals and ED occupancy. Second, the models are restricted by the precision of the data. The models are
made from operational data, the recording of which is secondary to the treatment of the patients. Any systematic bias in
the recording of the data is reproduced in the models and not brought out in the accuracy measurements because they
measure  the  models  against  further  operational  data.  A  possible  bias  is  that  delayed  recording  may  systematically
happen more often than early recording. Third,  the models have not been tested in use.  The accuracy of the model
forecasts has been assessed analytically with recognized measures but it remains untested whether the models are useful
in the ED to help coordinate work and counteract crowding. A test of the practical usefulness of the models entails the
development of a real-time visualization of the forecasts. The development, organizational implementation, and test of
such a visualization is important future work.

CONCLUSION

To counteract crowding in the ED, the clinicians need information about how the flow of patients through the ED
will evolve in the immediate future. While previous research has mainly focused on forecasting daily or monthly patient
arrivals, this study provides models for forecasting patient arrivals and ED occupancy hour by hour on the basis of
calendar  variables.  Hourly  forecasts  support  clinicians  in  their  ongoing  scheduling  and  rescheduling  of  how  the
available ED resources are to be divided among the patients in need of ED services. In contrast, daily and monthly
forecasts target issues such as staff allocation.

For patient arrivals, regression and ARIMA models performed similarly. Hourly patient arrivals were forecasted
with a  mean percentage error  of  47-58% (regression)  and 49-58% (ARIMA) across  the four  EDs.  The forecasts  of
hourly  patient  arrivals  were  substantially  less  accurate  than  forecasts  of  daily  patient  arrivals.  For  ED  occupancy,
ARIMA models were superior to regression models but the errors were larger than for patient arrivals and varied more
across the EDs. Hourly ED occupancy was forecasted with a mean percentage error of 69-101% (ARIMA). The error
was largest for the ED in which the patients stayed the longest, thereby indicating that with increasing length of stay
calendar variables became an increasingly insufficient basis for forecasting occupancy. Apart from this difference, the
models performed similarly for the four EDs, which were from the same Danish healthcare region but differed in the
demographics of their catchment areas and in the division of labor between the ED and the inpatient departments. This
shows that the models may be useful in regional coordination as well as in the individual EDs. More work is needed to
ascertain whether the accuracy of the hourly forecasts generalizes beyond the studied healthcare region.

ED occupancy depends on factors beyond calendar variables. However, the use of throughput and output factors in
forecasting models presupposes that information about the flow of patients through the ED is consistently recorded.
Such  procedural  information  is  often  recorded  in  transient  artifacts,  the  use  of  which  is  recommended  but  not
mandatory. The whiteboard providing the data for this study is a case in point. It remains for future work to investigate
whether the introduction of a forecasting tool in the ED will motivate the clinicians to record procedural information
more consistently or whether they, instead, will interpret the forecasts as crude estimates based on imperfect data.
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APPENDIX

Standardized coefficients (β) for the regression models of patient arrivals with a 1-hour forecasting interval.

Calendar variable ED1 ED2 ED3 ED4
Hour of the day

0 - -.237 -.226 -.228
1 -.040 -.262 -.264 -.255
2 -.047 -.272 -.273 -.268
3 -.056 -.283 -.283 -.278
4 -.068 -.288 -.287 -.288
5 -.070 -.290 -.290 -.293
6 -.069 -.265 -.272 -.286
7 -.036 -.212 -.226 -.243
8 .065 -.102 -.104 -.145
9 .202 - - -
10 .300 .074 .067 .068
11 .349 .105 .085 .113
12 .322 .132 .087 .106
13 .295 .105 .090 .084
14 .287 .086 .069 .081
15 .265 .062 .064 .057
16 .231 .029 .037 .035
17 .206 - - -
18 .195 - -.015 -.011
19 .201 -.026 -.020 -.012
20 .183 -.060 -.048 -.029
21 .139 -.099 -.086 -.075
22 .099 -.152 -.143 -.122
23 .037 -.202 -.181 -.175

Day of the week
Monday - .043 .034 .039
Tuesday -.033 - - -

Wednesday -.035 - - -
Thursday -.032 - - -

Friday -.030 - - .012
Saturday -.070 -.038 -.033 -.037
Sunday -.069 -.025 -.024 -.015

Month of the year
January -.050 -.025 -.043 -.045
February -.070 -.036 -.041 -.046
March -.044 -.013 -.018 -.030
April -.041 -.014 -.016 -.026
May -.014 .015 .012 -
June -.026 .015 - -
July - -.030 -.011 -.020

August - - - -
September -.015 .022 - .015

October -.047 - -.011 -.010
November -.050 - -.012 -
December -.061 -.014 -.023 -.023
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